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SUMMARY

Geophysical �ows can profoundly a�ect human activities. Often characterized by an astonishing range
of signi�cant scales and a rich assortment of physical processes, the complexity of such �ows gen-
erally precludes all but numerical simulation for prediction and understanding—yet even state of the
art computational models may be severely challenged by problems such as hurricane intensi�cation.
Although a number of signi�cant issues are involved, a major factor is often grid resolution, for which
grid adaptivity (GA) can be useful. Our experience has been that MPDATA is particularly well suited
for GA. This paper sketches general details of a model that blends MPDATA with continuous GA;
highlights a tensor viewpoint of the geometric conservation law; and presents results for both global
and regional atmospheric applications. Together, the examples demonstrate the advantages of using GA
with MPDATA to resolve �ne-scale features—explicit gravity waves generated by �ow over orography.
Resolution of these waves (or lack thereof) are shown to a�ect global climate; furthermore, wave reso-
lution is shown to depend upon the regional atmospheric environment. Finally the regional simulations
show a surprising increase in the complexity of the wave�elds as resolution is increased to the point
of resolving nonhydrostatic e�ects. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Historically, a primary focus in attempting to solve problems with a large range of scales
has been the development of simplifying approximations such as sub-grid physical parameter-
izations (e.g. turbulence, micro-physics, convection, etc. [1–4]), simpli�ed analytical models
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(e.g. incompressible, hydrostatic, anelastic, etc. [5, 6]), more e�cient computational algorithms
(e.g. implicit methods, multigrid, etc. [7, 8]); and improved machine hardware (e.g. faster
processors, parallel processors, etc.) to greatly reduce the range of scales and CPU time
necessary to simulate a geophysical �ow problem on a given processor. Indeed, the cumula-
tive e�ect of software advances on top of hardware advances appears to follow an extended
form of Moore’s law in which software advances approximately match hardware advances
in improving the performance of large computational models [9]. Although the cumulative
improvement has been of the order of 105 during the past 20 years, accurate simulations
of problems such as global climate continue to severely tax state of the art computational
models [10]. Even regional short-term forecasts can be problematic. A clear example occurs
in hurricane prediction where very unanticipated behaviours are possible.1 To the extent that
grid resolution is a limiting factor in simulations such as these, grid adaptivity (GA) can
help close the gap between the need for better accuracy and what current technology can
o�er.
Grid adaptivity describes a wide variety of methods for locally increasing grid resolu-

tion in computational models in regions of interest. Such methods include nested grids, grid
point insertion=deletion, and redistribution methods, among others [12]. In this study, the fo-
cus is on the redistribution of continuous coordinates. Compared to other types of GA, our
method tends to be analytically challenging, and somewhat less capable of adapting to highly
convoluted geometrical shapes; but it o�ers very high e�ciency2 and the power of tensor
theoretic methods to help ensure the consistency of the model equations. When coupled with
MPDATA, our resultant computational model, EULAG, routinely yields conservation prop-
erties accurate to 4–6 signi�cant �gures (generally this is limited only by the degree of
convergence of pressure, which can in principle be driven to machine precision)—a quality
that is important for long time integrations such as are needed for climate simulation (see
Reference [14] for vorticity diagnostics and Section 3.1 of this study for vorticity and con-
tinuity diagnostics). Finally, we note that EULAG can work equally well with analytically
speci�ed or numerically generated grids [13]; and can handle step changes in grid resolution
that mimic nested grids without producing spurious Gibb’s oscillations or other noise (see
Reference [15] for background history, and Reference [13] and Section 3.2 of this study to
substantiate our claim).
Although the deformable grid capability of our model is ‘relatively’ mature, the develop-

ment of dynamic grid generators for geophysical �ows is still in comparative infancy. While
targets3 for grid adaptation are relatively straightforward in more elementary applications such

1In September 2004, Hurricane Jeanne executed a sudden trajectory change due north from the northern edge of
Haiti, and then a clockwise loop some seven degrees north of the Dominican Republic before taking on a straight
westward trajectory into southern Florida. The 48 h forecast trajectories by an ensemble of models published by
the National Hurricane Center all missed predicting this ‘detour’ in an overall WNW trajectory into the state of
Florida [11].
2In practice changes in CPU time depend upon the physics of the resulting solutions; there is only relatively minor
overhead from the GA machinery itself. Generally, the CPU time is dictated by Courant number stability and for
such cases scales like ∼�t−1. It is possible that the CPU time decrease with GA, should the pressure equation
become su�ciently better conditioned as a result of GA, see Reference [13] and Section 3.1 of this study.
3By target we mean the structures in the solution and=or computational domain to which the grid is adapted.
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as in �ows past topography4 [16–19]; free surface �ows5 [25]; or in tracer transport6 [12, 28];
it is not at all clear how to adapt in more complicated applications such as climate predic-
tion. In climate the targeting choices for adaptation are far more varied. Major geographical
features such as mountain ranges, valleys, and coastlines provide stationary targets for grid
adaptation; simultaneously wind, temperature, and water vapor �elds provide dynamic ones.
The strategy utilized may depend strongly on the information desired, e.g. e�ects of mesoscale
convection, baroclinic eddies, tropical storms, orographic forcing, or—as will be shown later
in Section 3.2—nonhydrostaticity. The choices of scales and physical phenomena for targeting
are many.
In the following section we highlight some of the analytical and numerical details of the

computational model. With the exception of material in Section 2.3, the presentation presents
only a light sketch of the model details. All of the relevant details both numerical and analyt-
ical have been previously published in the archival literature, here for purposes of focus and
space we give ample citations for the interested reader. In Section 2.3, we present, we believe,
a new more fundamental tensor based proof of a general conservation principle of consider-
able importance in GA. Although long recognized as being important, our tensor based form
of this purely geometrical constraint reveals considerable new insights as to what must be
satis�ed and how it can be done. This new formalism has led to excellent results in simula-
tions with GA [13, 14, 25]. Finally, in Section 3 we show results from idealized global and
regional �ows with idealized orographic forcing. GA makes possible the resolution of oro-
graphic wave forcing in the global simulation. The regional simulations are made primarily
to substantiate the global results. However the �ne scale (∼10 km) nonhydrostatic e�ects that
appear make this example an excellent one to showcase the advantages of the combination of
the NFT solver MPDATA, GA and tensor formalism underlying our model. These attributes
make it readily able to resolve to sub-kilometer scales and show �ne scale nonhydrostatic
e�ects even though the computational domain must be large enough to capture strong forcing
with a characteristic horizontal scale of ∼500 km.

2. THE COMPUTATIONAL MODEL

Our anelastic, nonhydrostatic computational model is based upon a synergism between a non-
Cartesian tensorial representation of the model equations and nonoscillatory-forward-in-time
(NFT) numerical schemes [5, 13, 14, 25]. We implement GA capability via rigorous applica-
tion of a continuous mapping from an orthogonal curvilinear system of coordinates describing
a space Sp—where the physical problem is posed—into a transformed system of coordinates
describing a new space St . The physical problem is solved in the transformed system uti-
lizing the NFT Eulerian method, MPDATA [29].7 The synergy arises because the tensorial

4When topography is present, it provides a clear geometric disturbance to the �ow that requires high local resolution
to resolve wave activity near the topography.

5Historically, free surface �ows and other problems characterized by irregular and=or moving domain boundaries
provided the impetus for the initial development of numerical grid adaptation, [20–24].

6Targeting various combinations of the tracer magnitude, gradient and=or second derivatives of the tracer �eld have
all produced good results [19, 26, 27].

7An NFT semi-Lagrangian method [30] is also a model option.
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description helps in generating computational forms in generalized (transformed) coordinates
that maintain important properties of the solution. In particular, conservation depends upon
a geometric conservation law (GCL) which is expressed as a tensor identity in Section 2.3.
From a numerical perspective, not all analytical forms are equally useful, and some forms
result in much more e�cacious computational models. Our experience is that solving the
model equations in standard tensor form is not the best choice for the model, and instead
use a blend of various contravariant, covariant, and physical forms. The NFT character of
MPDATA brings additional bene�ts. For example, although formally the coordinate mapping
must be C2 continuous, the model can accommodate mappings with step discontinuities—that
is, a nested grid—without introducing refractions=re�ections from the sudden change in grid
resolution (see Reference [13] and Section 3.2 below).
A few comments about notation are in order. Although we use conventional operator nota-

tion in Section 2.2, throughout Sections 2.1 and 2.3 the preferred notation is tensor. Wherever
indices are repeated as upper and lower indices a summation over all values of that index is
implied unless speci�cally noted otherwise (there are exceptions). Some indices range over
the spatial coordinates only, others include time. Finally, we use the symbols ≡ to mean
identically equal to, := to mean de�ned as, and ∼ to mean approximately equal to.

2.1. Analytical formulation

We formulate (and solve) the governing equations in transformed coordinates (�t; �x; �y; �z) that
describe a computational domain St . The coordinates (t; x; y; z) for the physical domain Sp are
assumed orthogonal and stationary—Cartesian or spherical are typical examples. The physical
domains admitted under the di�eomorphism

(�t; �x; �y; �z) := (t; E(t; x; y); D(t; x; y); C(t; x; y; z)) (1)

cover a range from the canonical Cartesian box, to spherical shells with irregular undulating
boundaries. The following paragraphs highlight only a few key issues, for a more compre-
hensive treatment the reader is referred to References [13, 31].
Given (1) the anelastic equations of Reference [32] can be written as

@(�∗vsk)
@�xk

= 0 (2)

dvj

d�t
= −G̃k

j
@�′

@�xk
+ g

�′

�b
�j
3 +Fj +Vj (3)

d�′

d�t
= −vsk

@�e

@�xk
+H (4)

While these model equations may at �rst appear traditional, they are a hybrid form that blends
physical and tensor forms. They retain the coordinate invariance of a full tensor formulation
and are also complete in the sense that no approximations have been utilized other than the
anelasticity, and that Sp is intrinsically ‘�at’, e.g. has a zero Riemann curvature tensor8 and
is described by an orthogonal system of coordinates.

8The Riemann curvature tensor measures the curvature of the space–time underlying Sp, and is distinct from and
does not rule out the case of curved spaces such as a spherical shell in an underlying Euclidean space.
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Brie�y, vj denote components of the physical velocity9 de�ned in Sp; �, �, and �
denote potential temperature, density, and a density-normalized pressure; g is the accelera-
tion of gravity; Fj symbolizes the deviation of inertial forces (e.g. Coriolis and geospherical
metric accelerations) from the geostrophically balanced ambient (or environmental) state vje,
�e; whereas Vj symbolizes viscous dissipation of momentum; and H denotes di�usion and
sources=sinks of heat. Primes denote perturbations with respect to the environmental state, and
the subscript b refers to the basic state, i.e. a horizontally homogeneous hydrostatic reference
state of a Boussinesq type expansion around a constant stability pro�le; �∗ :=�b �G, where �G
denotes the Jacobian of the transformation, and j; k=1; 2; 3 correspond to ‘x’, ‘y’, ‘z’ compo-
nents, respectively, in either Sp or St . In the momentum equation (3) G̃k

j :=
√

gjj(@�xk=@xj) are
renormalized elements of the Jacobi matrix where summation is not implied over j, and �j

3
is the Kronecker delta. The coe�cients gjj are the diagonal elements of the conjugate metric
tensor of Sp. The total derivative is given by d=d�t= v∗i(@=@�xi), where v∗i is the contravariant
velocity in St , and vsi appearing in continuity (2) is the solenoidal velocity in St . These
two velocities di�er from each other by the grid speeds and are distinct from the physical
velocities. The indices i; m=0; 1; 2; 3; and i; m=0 refer to time �t, with v∗0 ≡ 1. The covariant
velocity v∗

i is required for evaluating the strain rate tensor appearing in Vj.

2.2. Numerical method

The theory and performance of our NFT approach have been broadly documented in the
literature; see Reference [33] for a succinct review. In essence, we approximate the prog-
nostic equations (3) or (4) to second-order accuracy in space and time, employing a formal
congruency of the Eulerian [29] and semi-Lagrangian [30] optional model algorithms. Either
algorithm can be written in the compact form

 n+1
i =LEi( ̃ ) + 0:5�tRn+1

i :=  ̂ i + 0:5�tRn+1
i (5)

where  n+1
i is the solution sought at the grid point (�tn+1; �xi),  ̃ :=  n + 0:5�tRn, and R

represents forcings (di�usion, buoyancy, sources=sinks, and so on) for prognostic equations
according to the Lagrangian form d =d�t=R. The numerical operator LE denotes a two-
time-level advective semi-Lagrangian or �ux-form Eulerian NFT transport operator. In the
Eulerian scheme, LE integrates a homogeneous transport equation for  ̃ using a fully second-
order-accurate multidimensional NFT advection scheme [29]; whereas in the semi-Lagrangian
algorithm, LE remaps transported �elds, which arrive at the grid points (�t; �xi), back to the
departure points of the �ow trajectories (�tn; �xo(�tn+1; �xi)) also using NFT advection schemes
[30]. Equation (5) represents a system of equations that is implicit with respect to all depen-
dent variables in (3) and (4), since all forcing terms are assumed to be unknown at n + 1.
Note that the forcing term on the rhs of (4) contains the complete convective derivative.
This is signi�cant because it guarantees that the implicitness of the numerical approximation
does not adversely a�ect either the impermeability of the lower boundary or the conservation
of �′, regardless of details of the transformation (1) (see Reference [5]).

9In meteorological applications, the physical velocity is typically de�ned using a local Cartesian system and so has
dimensions of length=time.
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The implicitness of the pressure gradient forces is an essential feature of the anelastic model,
as it enables the projection of the preliminary values LE( ̃ ) onto solutions of the continuity
equation (2). To make this projection, the system of simultaneous equations resulting from
(5) are algebraically inverted to construct expressions for the solenoidal velocity components.
These components are substituted into (2) to produce the elliptic pressure equation:

−�t
�∗

@
@�xj

[
�∗E

(
Ṽj − C̃jk @�

′

@�xk

)]
=0 (6)

where the entire equation has been premultiplied by −�t=�∗—a normalization that gives the
residual errors of (6) the sense of the divergence of a dimensionless velocity on the grid. This
facilitates the design of physically meaningful stopping criteria for the pressure solver [34].
The factor (−1) assures the formal negative-de�niteness of the elliptic operator on the lhs
of (6), required for convergence of the pressure solver. The coe�cients E, Ṽj, and C̃jk are
complicated functions of the reference state, computational parameters, Coriolis accelerations,
and the dependent �elds. A complete exposition is given in Reference [13].
The elliptic pressure equation (6) is solved (subject to appropriate boundary conditions)

using the generalized conjugate-residual approach—a preconditioned nonsymmetric Krylov-
subspace solver [35, 36]. Given the updated pressure, and hence the updated solenoidal
velocity,10 the updated physical and contravariant velocity components are constructed from
the solenoidal velocities (details may be found in Reference [13]). Nonlinear terms in Rn+1

(e.g. metric terms arising on the globe) may require outer iteration of the system of equa-
tions generated by (5)—see Appendix of Reference [5] for discussion. Additional details and
references for sub-grid-scale modelling and moisture may be found in Reference [33].

2.3. The geometric conservation law as a tensor identity

Early in the development of GA it was recognized that the method of computation of metric
terms appeared to have signi�cant impact on conservation properties, even for numerical
schemes that were conservative in a Cartesian formulation. Starting from �rst principles,
Thomas and Lombard [21] determined that if the Jacobian �G of the transformation11 satis�ed a
certain prognostic equation, termed the GCL, that the volume of the transformed computational
domain would be properly preserved. Currently, the GCL is recognized as being an important
property of computational models with GA [37]. Here we depart from attempts to satisfy the
GCL through use of an additional prognostic equation and instead show that the GCL is a
tensor identity, and that it may be satis�ed by computing requisite metric terms utilizing other
standard tensor identities.
The tensor form of the GCL may be motivated by transforming any conservation law from

one coordinate system to another via the chain rule. If the law is written in tensor form, then
the transformed law must retain identical structure due to the coordinate invariance property
of tensor forms. The actual computation, however, will reveal a residual term exists [14, 31],

10E(Ṽj − · · ·) in (6) is the updated solenoidal velocity vsj|n+1:
11Here �G= |�gmn|1=2 where �gmn= gpq(@xp=@�xm)(@xq=@�xn) denotes the metric tensor of St and gpq denotes the metric
tensor of Sp.
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with a coe�cient equal to the left-hand side of

G
�G

@
@�xi

(
�G
G

@�xi

@xm

)
≡ 0 (7)

The coe�cient is set to zero because tensor invariance requires it. The left-hand side of (7) can
be recognized as the divergence in St of the form (1=G)@�xi=@xm multiplied by the Jacobian of
Sp. This form gives weighted ‘velocities’ (m = 0), or ‘stretching factors’ (m=1; 2; 3) between
Sp and St . Evidently (7) is a set of four independent statements about the conservation of
space. It is the tensor form of the GCL.
In order to recognize that (7) contains the more traditional form of the GCL, consider the

m=0 component when Sp is described by Cartesian coordinates. Then xm= t and G ≡ 1, and
(7) reduces to

@ �G
@�t
+

@
@�x

(
�G
@�x
@t

)
+

@
@ �y

(
�G
@ �y
@t

)
+

@
@�z

(
�G
@�z
@t

)
≡ 0 (8)

This is exactly Equation (12) in Reference [21]. Satisfaction of (8) does not guarantee that
the m=1; 2; 3 components of (7) are satis�ed, however.
In practice, we interpret and utilize the GCL quite di�erently from that implied by the form

(8). First, we expand and reorganize (7) into the computationally more useful form:

G
�G

@
@xm

(
�G
G

)
≡ − @

@�xi

(
@�xi

@xm

)
(9)

Now it is clear that the GCL provides a connection between the derivatives of the Jacobian
and derivatives of the elements of the Jacobi matrix. This form is also equivalent to the
transformation law for contracted Christo�el symbols (proven below). As an example of
implementation, consider the time variable extension [18] of terrain following coordinates
[16]. Then the Jacobian �G=GGo where G and Go=(H − zs)=H are the Jacobians of Sp and
of terrain following coordinates in Cartesian coordinates, respectively. The surface mapping
function is denoted zs(t; x; y) and H is a constant domain height. In this case, (9) results in:12

G−1
o

@Go

@xm
=− @C;xm

@�z
=

{−zs; xm=(H − zs); m=0; 1; 2

0; m=3
(10)

Here subscripts preceded by a comma denote partial derivatives. Only the C;xm for m=0; 1; 2; 3
are required in the computational model. Since C;z=Go by de�nition, and C;xm=−zs; xm(H−�z)=
(H − zs) for m=0; 1; 2; (10) is viewed as providing computational formulae for computing
the zs; xm—and not the derivatives of Go.
In the more general case of horizontal stretching [13] and=or more complicated vertical

stretching [25], the GCL in the form (9) is still used to determine the metric terms C;xm .
Although extra terms appear in (10), fundamentally it retains the same structure. But this is

12Note that the Jacobian of the orthogonal coordinates describing Sp does not enter into (10). This is one of the
advantages of using non-Cartesian tensors; Equation (10) has exactly the same form whether Sp is described by
Cartesian, spherical, toroidal, etc. coordinates.
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not the complete story. The four components of the GCL cannot directly provide guidance
relating all the additional metric coe�cients that arise in the more general transformations,
and one may ask—are such relationships needed? The answer is a most emphatic yes!
The key to understanding what additional relations need to be satis�ed is found by proving

(7) via purely geometrical arguments. Following Reference [31], we begin by setting the left-
hand side of (7) equal to a residual R and by direct expansion and tensor manipulations,
prove R≡ 0. Expanding (7) and reorganizing terms yields:

R ≡
(
1
�G
@ �G
@�xi

)
@�xi

@xm
+

@xn

@�xi
@
@xn

(
@�xi

@xm

)
−
(
1
G

@G
@xn

)(
@xn

@�xi
@�xi

@xm

)
(11)

In the �rst term, the parenthetical expression may be replaced with a contracted Christo�el
symbol of the second kind in St , using the identity:{ n

n i

}
≡ 1
�G
@ �G
@�xi

(12)

cf. Section 2.5 in Reference [38]. In the third term, the derivative of G has been expanded
using the chain rule, and regrouped into two parenthetical expressions. The �rst one can
again be rewritten as a contracted Christo�el symbol of the second kind, only now in Sp.
The second expression is recognized, via the identity

�n
m ≡ @�xn

@xi
@xi

@�xm
(13)

to be the Kronecker delta tensor (n;m = 0; 1; 2; 3). Clearly n must be set equal to m in this
third term. After relabelling dummy (repeating) indices, there results:

R ≡
{ n
n i

} @�xi

@xm
+

@xn

@�xi
@2 �xi

@xn@xm
−
{ n
n m

}
(14)

The proof is now completed by writing the transformation law for Christo�el symbols of the
second kind, and contracting the upper index to one of the lower ones. The details are tedious
but standard, resulting in

{ n
n m

}
≡
(
@�xo

@xn
@xn

@�xl

)
@�xi

@xm

{
l

o i

}
+

@xn

@�xo
@2 �xo

@xn@xm
(15)

The range of indices for l; o are 0; 1; 2; 3. In the �rst term on the right, the parenthetical
expression is recognized to be another Kronecker delta, so o must be set equal to l in this
term. Then l becomes a dummy index in the transformed Christo�el symbol and may be
relabelled n. In the second term on the right, o is a dummy index and so may be relabelled i.
The right-hand side of (15) is now recognized to be exactly the �rst two terms on the
right-hand side of (14) and we have the desired result R≡ 0.
In summary, satisfying the GCL requires only the rigorous application of standard

tensor operations and identities. The most germane identities are the relationship between
elements of the Jacobi and inverse Jacobi matrices (13), and the transformation rule for con-
tracted Christo�el symbols (Equation (14) with R≡ 0). The former requires that care must
be taken in how various metric terms are computed, and the latter that care must be taken in
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how the derivatives of various metric terms are computed. The transformation rule for con-
tracted Christo�el symbols leads immediately back to (9);13 thus only (13) provides something
new. In four-dimensional space–time, (13) consists of 16 simultaneous equations—di�erential
identities—that relate the elements of the Jacobi and inverse Jacobi matrices of the transfor-
mation from Sp to St . Given our speci�ed functional form for transformation (1), six of these
reduce to trivial statements (i.e. 0=0 or 1=1), leaving 10 equations relating 20 metric coef-
�cients. These equations can be utilized on a ‘need to use’ basis. Since the problem is solved
in St , the physical coordinates of Sp are treated as dependent variables, that is, xi= xi(�xm).
Once the @xi=@�xm have been determined (either analytically or numerically), the simultaneous
equations (13) are used to determine the inverse metric coe�cients @�xm=@xi—which is what
are required in the G̃k

j coe�cients that appear throughout the model. In practice, the use of
the di�erential identities is limited to the metric coe�cients that are not already speci�ed by
(9). For the case of no horizontal stretching (13) is irrelevant, whereas for cases with horizon-
tal stretching it is critically important in maintaining the tensor form of the GCL (7).14 Our
experience to date is that using (9) and (13) as needed to evaluate metric terms gives excellent
results [13, 14, 25].

3. RESULTS AND DISCUSSION

3.1. Idealized global simulation with idealized Andes topography

This example was designed to test GA in the context of a global simulation, with the spe-
ci�c goal of attempting to resolve orographically forced gravity waves and to assess possible
impacts on climate statistics. The computational model was set up to simulate the idealized
Held–Suarez climate [39] over a topography representing an idealization of the Andes moun-
tains of South America.
The Andes, orientated roughly north to south, are noteworthy because of their extreme

height, with a large number of peaks exceeding 6000m from −35◦ to −10◦ of latitude.
Numerous peaks over 4000m extend from −45◦ to +5◦ degrees. Thus they rise nearly half a
scale height into the troposphere over half of the latitudinal extent of the southern hemisphere.
Clearly there is a potential for them to signi�cantly impact the mean �ows, yet the mountain
range is narrow in east to west extent, typically no more than 500 km. This presents a severe
constraint on climate models if they are to resolve the orographic forcing caused by these
mountains. Here we idealize the topography of the Andes as a long narrow, NS oriented
ridge. The topography is the analytically speci�ed pro�le

zs(x; y)=A exp

⎧⎨
⎩−

[(
x − xo
�x

)2
+
(
y − yo

�y

)2]2⎫⎬
⎭ (16)

13To see this, set R≡ 0 in (14), and apply (12) to rewrite the Christo�el symbols as derivatives of the Jacobian.
The �rst and middle terms can be reorganized to eliminate derivatives with respect to �xi and xn, respectively.
The �rst and third terms may then be combined, resulting in the form (9).

14Given the ubiquity with which (13) appears in standard tensor operations, its use to relate the Jacobi and inverse
Jacobi elements likely has numerous rami�cations.
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where A=5000m is the peak height, centred at xo=180◦ longitude15 and yo=−20◦ latitude.
The peak half widths are �x=2:5◦ and �y=25◦.
Three simulations using a grid size of (128× 64× 41) nodes in the (zonal×meridional×

vertical) directions, respectively, were made. The �rst and second simulations, denoted G1
and G2, used a uniform grid corresponding to a resolution of 2:83◦; 2:81◦; 0:75 km in the
zonal, meridional and vertical coordinates,16 respectively. Simulation G2 di�ers from G1 by
incorporating the idealized Andes topography (16)—simulation G1 uses a surface of constant
radius. The third simulation, denoted G3, also incorporates this topography, but in addition
uses horizontal GA to more �nely resolve the local region about the topography.17 The hori-
zontal GA was analytically speci�ed using a mapping similar to the one speci�ed in Section 4
of Reference [13] with maximum longitudinal and meridional stretching factors of Sx=3 and
Sy=2, respectively. The centre of maximum resolution was set over the topography, and so
was stationary. Figure 1 depicts the e�ect of this GA in that it e�ectively ‘magni�es’ the
topography so it may be better resolved by the computational model (note that the coordi-
nate lines shown in Figure 1 represent a coarser resolution than used in the simulation in
order to better show the stretching e�ects). The uniform grid results used a timestep of 450 s,
whereas 360 s was used for the third case with GA. The initial wind �elds were zero, as in
Reference [13]. The simulations were computed for 480 days, with ‘climate’ statistics being
computed using the second 240 day interval.
Table I summarizes the computational cost of the global simulations, as well as measures

of two conservation properties. In column three observe that the CPU time decreases with the
use of GA—a 21% reduction for G3 vs G2. This is due to a decrease in the condition number
of the pressure solver [13]. The last two columns show, after 480 days of integration, extreme
values and the global average values of two �elds that should be identically zero. The �rst of
these �elds is the �ow divergence, DVF, given by the solenoidal continuity equation (2). The
values in Table I are multiplied by the timestep even though this increases their magnitudes
by nearly three orders because the normalized value is more appropriate for gauging the
accuracy of the solution [34]. Since (2) is the basis of our elliptic pressure equation (6), the
�ow divergences can be driven down to machine precision simply by increasing the number
of pressure iterations. The second �eld is the divergence of the solenoidal vorticity multiplied
by the timestep, DVV :=∇ ·!s�t. It is a well-known vector identity that the divergence of the
curl of a vector �eld must be identically zero. In generalized coordinates, the vorticity must
be expressed as a contravariant form since this is what the generalized divergence operator
requires. Given our coordinate mapping (1), this simpli�es to the divergence of the solenoidal
vorticity which is de�ned similarly to the solenoidal velocity (see References [14, 31] for the
development of generalized vorticity). The extreme values in column four are measures of
greatest local departure from these identities. They are due to the truncation error of the
solutions. The global average �elds are much smaller. These results are routine for our model
with a pressure convergence stopping criterion of 0:3× 10−4.

15Since there is only one topographical feature and the surface is otherwise uniform, the longitudinal location is
arbitrary.

16The model atmosphere has a depth of 30 km.
17Compared to simulation G2, there is no change in vertical resolution; however compared to G1 there is a change
corresponding to the e�ect of terrain following coordinates [16].
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Figure 1. Representative continuous mapping for global simulation in normalized coordinates.
(X; �X )= (�; ��)=360◦, (Y; �Y )= (�; ��)=90◦, where (�; �) are the zonal and meridional coordinates,
respectively. The shaded in ellipsoid shows approximate extent of idealized topography. Bold
solid line shows latitude of maximum meridional resolution and bold dashed line shows latitude

of centre of transformed meridional coordinate �Y .

Table I. Summary of global simulations.

Simulation Type CPU time Ext(DVF;DVV) Ave(DVF;DVV)

G1 Uniform 0.86 (1:32; 3:49)× 10−5 (7:62; 0:20)× 10−8

G2 Uniform 1.00 (3:63; 44:9)× 10−5 (−40:5;−0:80)× 10−9

G3 Continuous 0.79 (7:92; 4:84)× 10−5 (1:66; 2:60)× 10−9

Type refers to the stretching used for the horizontal grid; CPU time is relative time to compute 120 days
of simulated time, with simulation G2 requiring 26.7 h wall clock time on 16 POWER 3 PE’s of the IBM
RS=6000 cluster Blackforest at the U.S. National Center for Atmospheric Research; DVF is the �ow diver-
gence normalized by timestep, ∇ · (�∗vs)�t, and DVV is the divergence of solenoidal vorticity normalized
by timestep, ∇ ·!s�t; Ext(A; B) := (Ext(A);Ext(B)) and Ave(A; B) := (Ave(A);Ave(B)) where Ave(A) is the
average and Ext(A) :=Max[Max(A); |Min(A)|].
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Figure 2. Local xz �elds from global simulation G3 at latitude �=−35:5◦ latitude. Approximate
zonal extent of 35◦ (3800 km) centred on southern �ank of idealized topography: (a) natural log of
potential temperature �eld at 298.75 days; min =5:625 (277K) at bottom, max =6:500 (665K)
at top, inc=0:0175 (4.8K at bottom increasing to 11.6K at top); and (b) vertical wind �eld

at 299.00 days; (min;max; inc)= (−0:17; 0:11; 0:02)ms−1.

Simulation G1 replicates the standard Held–Suarez climate and compares well with pre-
viously published results [5, 13, 39]. Although somewhat similar to the �rst simulation, G2
shows: (i) a loss of symmetry between the northern and southern hemispheres; (ii) a weakened
and somewhat distorted southern midlatitude zonal jet; and (iii) strong westerlies at higher
altitudes in the equatorial zone. A weaker southern jet is supported by climate statistics [40]
for equinox conditions (which are more representative of the Held–Suarez forcing). However,
the strong westerlies at upper equatorial altitudes are anomalous.
With up to three times the local resolution of G2—that is, 0:94◦ zonal × 1:41◦ meridional—

simulation G3 is capable of directly resolving larger gravity waves. Figure 2 clearly shows
such an instance along the southern �ank of the Andes at � :=y=Ro= − 35:5◦ latitude near
day 299 (Ro is the planetary radius). The details of the wave�eld shown in the localized xz
slices of Figure 2 change appreciably on a time scale of 1 day, and are also quite sensitive
to latitude. Nevertheless, horizontal and vertical wavelengths of �x=550 and �z=10km,
respectively, are typical in the region above 7.5 km altitude. These wave characteristics can
be shown to �t the dispersion equation for inertio-gravity waves (a generalization based upon
Equation (5.7) in Reference [13]) to within 15%. It is noteworthy that no such clear examples
of waves occurred in G2 which used the uniform grid.
Figure 3 shows the zonal-time average of zonal wind for G2 and G3. The most signi�-

cant di�erence between the two ‘climates’ is that the anomalous equatorial jet apparent in
Figure 3(a) does not appear in Figure 3(b). We attribute this di�erence solely to the in�uence
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Figure 3. Global simulation zonal-time averages of the zonal wind, u. The zonal averaging is global; the
time averaging is over the 240 day interval from 240 to 480 days: (a) simulation G2, horizontally uni-
form grid with idealized Andes topography; and (b) simulation G3, idealized topography with horizontal

GA that selectively targets the topography.

of insu�ciently resolved orographic wave forcing. Details behind this assertion are given in
the following subsection. We close our discussion of the global results by observing that
the northern jet in Figure 3(b) is stronger, narrower, and shifted equatorward compared to
Figure 3(a). These traits are characteristic of poor meridional resolution [13]. In fact, at
the northern jet centre �=30◦ latitude, the local resolution is 4:3◦, or only 65% of the
meridional resolution of G2. This contrasts sharply with the enhanced meridional resolution
in the southern hemisphere. This example serves to point out that the selection of targets and
grid generation algorithms have to be made with considerable �nesse.

3.2. Idealized regional simulation with idealized Andes topography

The comparisons in the previous subsection suggest that by resolving inertio-gravity waves
over the idealized topography, more realistic ‘climate’ results. But it does not elucidate the
details of the wave-forcing mechanism by which this may occur. In this section, we utilize
the model in regional mode to investigate the e�ects of resolution on regional wave forcing.
Additionally, we highlight some additional GA mappings which allow us to readily resolve
to sub-km scale even though the computational domain is thousands of km in zonal extent.
We �nd that as resolution increases to ∼10 km and beyond, that the wave �eld dramatically
alters character compared to Figure 2 due to nonhydrostatic e�ects.
A series of 2D simulations with zonal resolutions ranging from a low of 315 km—corres-

ponding to the uniform grid in global simulation G2—to a maximum of 0.890 km were
conducted. All regional simulations used the same vertical resolution and domain depth as
in the global simulations as well as a zonal extent of ∼35◦ and the topographic pro�le
generated by (16) at −35:5◦ latitude as shown in Figure 2. Since the primary focus of these
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simulations was to assess the e�ects of zonal resolution, Coriolis e�ects were set to zero.18 The
environmental potential temperature �eld was set to match that of the global Held–Suarez
forcing at −35:5◦ latitude; the same basic state density �eld was also used. The environmental
zonal wind �eld was set equal to the 48 h average value from global simulation G3 for days
297.0–299.0. This average was also a regional one over the domain 163◦6 �6 198◦ (3800 km
zonal extent at −35:5◦ latitude) and −38:8◦6�6−32:8◦ (670 km meridional extent); where
� := x=Ro. The resulting averaged wind �elds indicate the local environment has a zonal wind
that is one of constant shear rate �=0:0019 s−1 from the surface up to ∼12 km altitude. It
peaks at a value of 25:0ms−1 at ∼13:5 km, and then decreases with a constant shear rate of
�=−0:0030 s−1 to near zero values at ∼22:5 km altitude and above. The averaged meridional
wind for the local environment is ∼5 times smaller than the averaged zonal wind and so was
assumed identically zero. The averaged vertical wind for the local environment is ∼0:01ms−1
and thus completely negligible.
A 3D simulation at intermediate zonal resolution was also made to assess the impact of

spanwise disturbances. This run used a meridional extent of 300 km, a uniform �y=7:5 km,
and continuous GA in the zonal direction. The continuous mapping was speci�ed by

X ( �X : Sx; Xo)=Xo + S−1
x ( �X − �Xo) +

{
(1− S−1

x )( �X − �Xo)5

1 + 10 �X 2
o + 5 �X 4

o

}
(17)

where Sx(t) is the maximum stretching factor at location X =Xo(t) in the normalized physical
coordinates of Sp, and �X = �Xo(�t) is the corresponding location in the normalized transformed
coordinates of St . Required is that Xo ∈ [−1;+1], since this is the domain and range of
the mapping.19 Generally, time adaptation enters the mapping implicitly through these two
parameters. Constant values of Sx=2:857 and Xo=0:1053 were used in this simulation, cor-
responding to a maximum zonal resolution of �x=7:00 km at x=200 km (right �ank of
topography). The value of �Xo is best determined iteratively from

Xo=1− S−1
x (1− �Xo)−

{
(1− S−1

x )(1− �Xo)5

1 + 10 �X 2
o + 5 �X 4

o

}
(18)

The continuous mapping (17) has the additional property of zero second derivative at the
point of maximum stretching. This ensures that the Jacobian is nearly constant for an extended
neighbourhood of the targeted region.
Table II summarizes the regional simulations, designated as R1–R10, with R10 being the

3D simulation. Higher resolution 2D runs R8;R9 also used the continuous GA mapping (17),
but with Sx=2:801 (and the same Xo). Simulation R7 used the ‘nested’ GA mapping

X ( �X : Sx; Xo)=

⎧⎪⎨
⎪⎩

G1 ∀ �X ∈ [−1; �XL]

G1 +G2 ∀ �X ∈ ( �XL; �XR]

G1 +G2 +G3 ∀ �X ∈ ( �XR;+1]

(19)

18The dispersion equation for inertio-gravity waves quanti�es this e�ect as being of the order of 10% on wave
characteristics such as wavelengths.

19This mapping is for computational domains with open boundary conditions. For an example appropriate for
periodic boundary conditions, see Section 4 of Reference [13].
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Table II. Summary of regional simulations.

Simulation �x : n Type �t CPU time IEF

R1 315 : 13 Uniform 900 — −0.121
R2 122 : 32 Uniform 360 0:006 −0.165
R3 50:0 : 77 Uniform 240 0:03 −0.42
R4 20:0 : 191 Uniform 180 0:1 −0.64
R5 7:0 : 543 Uniform 90 1 −0.69
R6 2:5 : 1521 Uniform 45 9 −0.79
R7 2:5 : 543 Nested 45 2 −0.78
R8 2:5 : 543 Continuous 45 1:4 −0.79
R9 0:890 : 1521 Continuous 20 25 −0.79
R10 (3D) 7:0 : 191 Continuous 120 29 −0.75
�x in km; n is number of gridpoints; �t in s; CPU time is relative time to
compute to 720min simulated time, with simulation R5 requiring 159 s on a
single POWER 4 PE of the IBM RS=6000 cluster Bluesky at the U.S. National
Center for Atmospheric Research; and integrated eddy �ux (J=m2), IEF, is the
column integrated vertical eddy �ux (see discussion of Figure 6). For simulations
with GA (either nested or continuous) �x gives the maximum resolution in the
target region. For the 3D simulation, R10, 41 spanwise nodes were used with a
constant �y=7:5 km.

where

G1( �X : Sx; Xo) =−1 + S−1
x �( �X + 1)

G2( �X : Sx; Xo) =−S−1
x (�− 1)( �X − �XL)

G3( �X : Sx; Xo) = S−1
x (�− 1)( �X − �XR)

(20)

As in (17), Sx(t) is the enhancement in resolution over that of a uniform grid, and Xo(t) is
the centre of the target region in normalized physical coordinates. The remaining parameters
are de�ned as follows:

�= (Sx − �Xl)=(1− �Xl)

�Xo = �Xl − 1 + (1 + Xo − S−1
x
�Xl)=(S−1

x �)

�XL = �Xo − �Xl

�XR = �Xo + �Xl

(21)

where �Xl is the fraction of the transformed coordinates alloted to the high resolution ‘nest’; and
�XL; �Xo; �XR are the left edge, centre, and right edge of the high resolution region in normalized
transformed coordinates, respectively. Generally, �Xl = 0:30 works well.20 In simulation R7,
Sx=2:801 and Xo=0:1053 were used so as to match the continuous GA of R8. This nested GA

20Large values of �Xl cause the outer grid to have quite poor resolution, while small values make the nested region
too small. Care has to be taken in implementing (19)–(21) so that both of �XL; �XR ∈ [−1;+1].
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Figure 4. Vertical wind �elds generated by regional simulations at 720min: (a) simu-
lation R2, �x=122 km, (min; max; inc)= (−0:08; 0:12; 0:02)ms−1; (b) simulation R3,
�x=50 km, (min; max; inc)= (−0:28; 0:15; 0:05)ms−1; (c) simulation R4, �x=20 km,
(min; max; inc)= (−0:4; 0:4; 0:1)ms−1; and (d1) and (d2) simulation R5, �x=7:0 km,
(min; max; inc)= (−0:8; 1:4; 0:2)ms−1. Note that Panels d1 and d2 show identical results

and di�er only in scale. Panels a–d1 are all depicted at same scale as Figure 2.

is complementary to the numerical GA version demonstrated in Section 3.2 of Reference [13]
and is based upon the operator form in Appendix B of that study.
Figure 4 shows the e�ect of resolution on the wave�eld as depicted by the vertical wind �eld

after 720min of simulated time. Panels a–c correspond to simulations R2–R4. Panels d1; d2
both correspond to simulation R5; d2 is a closeup of d1. R2 has the same zonal resolution
as global simulation G3 (enhanced resolution in the neighbourhood of the topography). The
overall morphology of the wave�eld in Figure 4(a) corresponds reasonably well to that seen in
Figure 2(b). It displays zonal and vertical wavelengths of �x � 500 km and �z � 8 km—a credi-
ble match to Figure 2(b) given the approximations involved with respect to determining the
local environmental state—which is crucial in selecting which waves out of those permitted
by the dispersion relation are expressed. Not shown is the result from simulation R1, which
has the same resolution as global simulation G2 (uniform grid). Those results fail to show any
well developed wave �elds. Panels a–d1 in Figure 4 show that the waves appear to steepen
dramatically as resolution increases. Simultaneously, the magnitudes of the vertical velocity
increase by a factor of ∼20× (Simulation R2 vs R5); and the large-scale structure of the
wave�eld breaks up into a series of smaller wavetrains. The 3D simulation R10 is closest to
the 2D simulation R5. Although not shown, it gives results that are quite similar to those in
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Figure 5. Vertical wind �elds generated by high resolution regional simulations at 720min:
(a) simulation R6, �x=2:5 km (uniform), (min; max; inc)= (−2:0; 3:2; 0:5)ms−1; (b) simulation
R7, �x=2:5 km (nested GA), (min; max; inc)= (−2:0; 3:5; 0:5)ms−1; and (c) simulation R9,

�x=0:89 km (continuous GA), (min; max; inc)= (−3:0; 9:0; 0:5)ms−1.

Figure 4(d2) except that the most intense vertical updraft on the extreme right is much
weaker. This is due to strong spanwise activity that cannot occur in the 2D simulations.
Such a�ects are highly localized and although important to the details of �ne scale wave
interactions=turbulence, do not appear to signi�cantly a�ect the overall evolution of the
wave�eld.21

Figure 5 shows a closeup of the resulting wavetrains on the downslope surface for higher
resolution simulations than in Figure 4. Panels a; b correspond to simulations R6;R7. The �rst
has a uniform resolution �x=2:50 km, while R7 uses the nested GA mapping (19) to achieve
the same resolution in the region shown in Figure 5 but with only 36% as many gridpoints.
The same timestep is used in R7 as in R6 as this is set by Courant number limitations in the
target region. Nevertheless, simulation R7 takes only 22% as much CPU time to complete as
does R6, substantially better than would be anticipated based upon the number of gridpoints
alone. This may be due to the improvement in the condition number of the elliptic solver

21A similar conclusion was obtained for deep gravity wave breaking with 2D forcing [41].
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that occurs with fewer grid points. Not shown are the results from simulation R8, which uses
continuous GA to achieve 2.5 km resolution in the target area. This result appears extremely
similar to those shown in Panels a; b of Figure 5; simulation R8 is even faster in execution
time than R7. Additional comparisons with the potential temperature and zonal wind �elds
of R6 fail to show any obvious wave refraction=re�ection e�ects for R7;R8. For the nested
grid example R7 this result is especially striking, although consistent with the NFT advected
nested grid example of Reference [13], because of its abrupt changes in metric coe�cients.
We attribute this accuracy to the simultaneous use of the NFT solver MPDATA and the
exacting tensor formalism of the model. Figure 5(c) shows results from simulation R9, which
uses continuous GA to achieve a maximum resolution of 0.89 km in the target region using
the same number of grid points as R6. The columnar nature of the wavetrains is essentially
the same as shown in Panels a; b, but it is more intense and shows additional structure at �ner
scales—trends that are consistent with increases in resolution. Since these wave columns are
only beginning to be resolved in Figure 4(d2), it appears that �x=2:5 km is the minimum
su�cient to resolve their ‘converged’ structure.
In Figure 5(c) the vertical winds are ∼10ms−1. This far exceeds what is allowed for

hydrostatic approximations, and clearly indicates that nonhydrostatic e�ects are strong. This is
also indicated by the aspect ratios of the columnar waves, with �x=�z � (45 km)=(15 km)=3.
This is close to the unit aspect ratio for breaking nonhydrostatic waves in References [18, 41].
The wave columns are arranged with a wavelength of �60 km, and weaken so strongly with
height as to die out completely well below 20 km altitude. This wave�eld may result from an
interference pattern between the larger-scale (hydrostatic) waves depicted at lower resolution
and a series of higher mode vertical waves that arise due to nonhydrostatic wave trapping
[42]. The strong shear in the zonal wind throughout much of the regional atmosphere at
−35:5◦ latitude produces an environment that is conducive for wave trapping.
We conclude our discussion of the regional simulation results by returning to the ini-

tial question that motivated the regional simulations, how well must the idealized Andes be
resolved in the global simulation in order to get the gravity wave forcing e�ect on climate
correct? To gauge the wave-forcing e�ect, we examine the vertical component of the eddy
�ux (EF), 〈�bu′w′〉, depicted in Figure 6. Except for result GG explained below, the averaging
regions for the EF are equal to the horizontal extent of the regional domain. Broadly, simu-
lations R2–R10 all have the same qualitative form, and R6–R10 are even in close agreement
quantitatively.22 In particular, simulation R2 which matches the enhanced zonal resolution of
global simulation G3 has a qualitatively correct form for the EF. However, it does have
the smallest magnitude of all the simulations in this group. Regional simulation R1, which
matches the uniform zonal resolution of global simulation G2 has the wrong qualitative form
and can summarily be discarded as having inadequate resolution. A regionally averaged EF
from G3 at day 299:00 is also shown in Figure 6 and labelled as result GR.23 The globally
averaged EF of G3 is also shown in Figure 6 as result GG. Result GR should match R2.
Instead, it matches better with the higher resolution regional simulations. In order to assess
the quantitative agreement, we introduce the column integrated EF, IEF. Values of IEF for the

22This consistent trend suggests that the localized nonhydrostatic e�ects so prevalent at the higher resolutions do
not greatly a�ect regionally averaged quantities.

23The regionally averaged eddy �ux GR corresponds to a region extending 35◦ in longitude and 6◦ in latitude
centred on the NS ridge of the topography at −35:5◦ latitude.
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Figure 6. Vertical eddy �uxes. Regional simulations R1–R10 are evaluated at 720min; results GR and
GG are evaluated from simulation G3 at 299.00 days; GR is based upon a regional averaging extending
35◦ in longitude and 6◦ in latitude centred on the NS ridge of the topography but at −35:5◦ latitude;

GG is based upon averaging around the whole planet.

regional simulations are listed in the last column of Table II. The integrated �ux for GR
is −0:44 Jm−2, nearly three times the value of −0:165 Jm−2 for case R2. Why such a large
di�erence? The wave�eld in global simulation G3 has been integrated throughout the duration
of the transient wave event shown maximally in Figure 2, which had a time scale of ∼2
days. If one examines the transient development of IEF for case R2, it is found to decrease to
−0:40 Jm−2 after 2.0 days—a much better match. We conclude that the two global simula-
tions G2 and G3 are consistent with the regional simulations and that only G3 has su�cient
resolution to get the orographic wave forcing approximately correct. Regional simulations in
two other zonal bands (bounded in latitude) near the mountain peak and in the equatorial
region extend this conclusion to these other two bands as well.
To assess the impact of resolved wave forcing on ‘climate’, a �nal diagnostic was utilized

whereby we compared the EF’s computed in several zonal bands using the results from global
simulations G1–G3. Centred on the mid-latitude jets, the equatorial zone, and at −35:5◦, EF’s
were computed in these bands using a global zonal average (06 �6 360◦) to show the
climate; and also for simulations G2;G3 a regional zonal average of 35◦ longitudinal extent
centred on the topography to show the local wave forcing. The outstanding result is that the
regional EF due to gravity waves, whether properly resolved or not, has only small impact on
the climate in all zonal bands except the equatorial zone. We attribute this to baroclinicity.
At higher latitudes, the contribution to EF by baroclinic instability dwarfs any contributions
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due to gravity waves.24 Near the equator, however, baroclinicity vanishes and the resulting
globally averaged EF �eld is near zero. Here regional EF’s induced by orographically forced
waves can impact the global average; in our study insu�cient resolution causes the spurious
generation of a large regional EF that results in an anomalous global jet.

4. CONCLUSIONS

Our experience to date is that MPDATA is well suited for GA, particularly within the con-
text of continuous mapping methods. The computational model resulting from this synergism,
EULAG, has the capability to maintain conservative properties over an extended integration
period, even with GA ‘turned on’. We attribute this capability to: (i) the rigor of the ten-
sor analysis underlying the formulation—further developed in this study in regards to the
geometric conservation law and attendant identities; and (ii) the NFT character of MPDATA.
Solutions generated with EULAG maintain conservation and do not show Gibbs oscillations
even with step changes in grid resolution—an extreme test given the assumed C2 continuity
of the coordinate mapping.
We �nd that by using GA to generate high resolution in targeted regions of interest, that

reductions of up to an order of magnitude in CPU time appear possible compared to simu-
lations using grids with equally high but uniform resolution. When GA vs uniform grids of
the same size are examined, we �nd that the GA machinery itself adds only a minor cost to
the computations [13]. Instead, the CPU time is dictated by physical considerations, e.g. the
Courant number may increase due to better resolved or entirely new physical e�ects, such
as nonhydrostaticity, and one has to ‘pay’ to sample the enhanced variability of �elds in the
targeted region. Conversely, if the limiting Courant number is not signi�cantly changed in the
targeted region, it is entirely possible for a simulation with GA to take less CPU time due to
improvements in the condition number of the pressure solver.
Finally, we document that by using GA in a global model, it is possible to resolve regional

episodic gravity wave forcing due to topography that would otherwise not be readily resolv-
able; and that failure to properly resolve such forcing can impact ‘climate’. This assertion is
strongly supported by a series of careful diagnostics of eddy forcing in the global simulations
and in a series of regional simulations designed to elucidate the e�ects of model resolution
on topographically forced waves.
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24This is true only in the lower atmosphere. In the upper atmosphere (above 50 km), gravity wave breaking can
become a major contributor to EF’s and the general circulation [18].
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